
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024 1

A Rapid Adapting and Continual Learning Spiking
Neural Network Path Planning Algorithm for

Mobile Robots
Harrison Espino1 and Robert Bain2 and Jeffrey L. Krichmar, Senior Member IEEE1,3

Abstract—

MAPPING traversal costs in an environment and planning
paths based on this map are important for autonomous

navigation. We present a neurorobotic navigation system that
utilizes a Spiking Neural Network (SNN) Wavefront Planner and
E-prop learning to concurrently map and plan paths in a large
and complex environment. We incorporate a novel method for
mapping which, when combined with the Spiking Wavefront
Planner (SWP), allows for adaptive planning by selectively
considering any combination of costs. The system is tested on a
mobile robot platform in an outdoor environment with obstacles
and varying terrain. Results indicate that the system is capable
of discerning features in the environment using three measures
of cost, (1) energy expenditure by the wheels, (2) time spent in
the presence of obstacles, and (3) terrain slope. In just twelve
hours of online training, E-prop learns and incorporates traversal
costs into the path planning maps by updating the delays in the
SWP. On simulated paths, the SWP plans significantly shorter
and lower cost paths than A* and RRT*. The SWP is compatible
with neuromorphic hardware and could be used for applications
requiring low size, weight, and power.

Index Terms—Autonomous Vehicle Navigation, Motion and
Path Planning, Neurorobotics

I. INTRODUCTION
Finding one’s way around in an ever-changing world is

an important part of everyday life. Similarly, robots and
other autonomous systems require this capability. Researchers
and industry have made considerable progress developing
navigation systems. However, critical open issues have been
identified such as: 1) Generating maps using data from mul-
tiple sensors, 2) Continual learning without offline retraining,
and 3) Flexibility in the face of a changing environment and
different navigational objectives, such as conserving battery
usage or avoiding foot traffic [1]–[3]. In the proposed work,
we address these issues by developing a novel approach that
takes different traversal costs into account when navigating.

Manuscript received: May 10, 2024; Revised: August 6, 2024; Accepted:
August 27, 2024.

This paper was recommended for publication by Editor Tetsuya Ogata upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the Air Force Office of Scientific Research
(AFOSR) Contract No. FA9550-19-1- 0306, and by the National Science
Foundation (IIS-RI award 1813785 and NSF-FO award IIS-2024633).

1Espino is with the Department of Computer Science, University of
California, Irvine, Irvine, CA, USA espinoh@uci.edu

2Bain is with the Department of Neurobiology and Behavior, University of
California, Irvine, Irvine, CA, USA rkbain@uci.edu

1,3Krichmar is with the Department of Cognitive Sciences and Department
of Computer Science, University of California, Irvine, Irvine, CA, USA
jkrichma@uci.edu

Digital Object Identifier (DOI): see top of this page.

We present a spiking neural network navigation system that
simultaneously constructs environmental cost maps and uses
those maps to plan efficient paths. The system is tested on
a ground robot in rugged, varied outdoor terrains with cost
maps for obstacles, slope, and for the robot’s effort based on
the motor’s current draw. We show that the robot rapidly learns
to plan paths that avoid impassable trees and benches with an
obstacle cost map, and plans smoother or flatter paths with the
current or slope cost map.

Our utilization of spiking neurons makes implementation
on highly parallel hardware, like neuromorphic hardware,
possible in the future. Compared to conventional architectures,
neuromorphic networks provide greater energy efficiency and
hardware size advantages [4], [5]. The SWP [6] and E-prop
[7] have been implemented on neuromorphic hardware. The
present work demonstrates the applicability of these elements
for robotic navigation.

SWP was introduced in [8], and compared to A* in
simplified pre-mapped environments, where the costs were
uniform values for sidewalks, grass, and obstacles. E-Prop was
added to SWP to update connection delays in simple, grid
world simulations with uniform, noise-free costs [9]. An open
question is whether the SWP has advantages where costs are
discovered by a physical robot’s sensors.

The main contributions of this work are as follows:
1) We show that our navigation system can simultaneously

map complex, real-world environments in real time and
plan paths over multiple measures of cost, which are
measured with noisy sensor readings onboard a physical
robot. This map is continuously learned online through
experience. The robot uses this map to plan trajectories
depending on what costs are considered.

2) In trials with a ground robot, we show that the robot
can learn a cost map in a few hundred training steps
and several hours of runtime. We also show that the
robot can adapt to changes in the environment in just a
few trials without taking the system offline.

3) By exhaustively simulating all paths through our learned
costmap, we find that the SWP is the best candidate
for minimizing cost and path length between itself, A*,
RRT*, and a shortest Euclidean distance planner.

4) The present spiking neuron implementation could be
implemented on neuromorphic hardware to reduce the
size, weight, and power of a navigation system.

Figure 1 provides an overview of the path planning system.
The equations in the figure are described in Sections III-A and

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

Fig. 1: Overview of our navigation system. 1. Neurons in the SWP represent locations in space. To plan a path, a spike is
induced at the robot’s start location and propagates until it reaches the goal location. 2. The robot navigates to the goal using
the planned path. Internal measurements and environmental sensors track costs when traversing between neuron waypoints. 3.
Using the learned costs, the planner is updated using E-prop. The figure shows each neuron’s eligibility trace, which determines
the update magnitude based on how recently the neuron spiked.

III-B.

II. RELATED WORKS

A. Path Planning

Traditional solutions to path planning often approach the
problem by traversing through a graph of costs, or through
direct sampling of the state space. Here, we briefly review
popular algorithms from both.

A* traverses a graph by considering nodes according to
a priority queue sorted by an immediate cost value and a
heuristic. Given an admissible heuristic, A* has been proven
to provide cost optimal paths [10]. A* has been utilized for
robot navigation as well as applications such as puzzle solving
and resource allocation. In unknown environments, the D*
algorithm (shortened from Dynamic A*) aims to reach a goal
while continually re-planning when new information about the
environment is discovered [11].

Sampling-based algorithms form a viable path by exploring
the space of permissible states. Rapidly exploring random tree
(RRT) is one such algorithm designed to efficiently construct
a space filling tree until a sequence of valid states between a
start and goal state is found [12]. It is often employed in high-
dimensional trajectory planning problems in which quickly
generating a feasible path is more important than generating
an optimal one [13].

Many variants of RRT have been created to address prob-
lems such as optimality or environmental changes. For the
former, RRT* is a variant of RRT which aims to optimize for
some cost using a tree rewiring step [14]. RRTX further builds
on this concept for dynamic environments [15].

B. SLAM

Mapping of an environment is often accomplished through
the process of simultaneous localization and mapping
(SLAM). This is a thoroughly explored problem in robotics
in which the environmental features and the robot’s position
in the environment are unknown, and both must be estimated
through sensory and self-motion data. Classical solutions to
this problem such as extended Kalman filter SLAM (EKF-
SLAM) iteratively estimate a posterior probability distribution
for the robot pose and landmark positions [16]. Other methods
use the data as constraints to a graphical network representing
the posterior [17], or rely on tracking changes in visual
input [18]. In a more biologically-inspired approach, RAT-
SLAM integrates visual place recognition and robot position
to represent the robot and environment through a grid of “pose
cells” [19].

In these cases, the map consists of geometric environmental
features or salient visual features that serve the purpose of
aiding localization. Not present are the aspects of steepness,
unevenness, or other measures of traversal difficulty meant

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

ESPINO et al.: RAPID ADAPTING PATH PLANNING 3

to aid in navigation. Methods such as [20] or [21] use deep
learning approaches such as inverse reinforcement learning or
semantic segmentation to generate a costmap of such features
for the surrounding environment. Semantic segmentation uses
offline training with a dataset of semantically labeled images.
Inverse reinforcement learning requires human demonstration
with which to infer a reward function.

Solutions to SLAM also assume that the robot’s trajectory
is decided externally through manual controls or a separate
path planning policy. The emerging field of active SLAM
combines path planning with SLAM, with the objective of
choosing a trajectory which accurately and quickly maps an
environment [22]. The goal of path planning in this paradigm
is to formulate a path which minimizes the uncertainty of the
SLAM algorithm. However, for some applications, it may be
necessary to dynamically consider other goals depending on
the context. For instance, an autonomous robot may need to
manage battery usage at certain times by planning paths which
minimize power consumption. Thus, a navigation system
which affords such versatility is needed.

C. Deep Learning Methods

Deep learning solutions to trajectory planning include im-
itation learning and reinforcement learning for end to end
navigation. Imitation learning methods such as [23]–[25] use
human annotated data to mimic expert demonstrations. Due
to their reliance on pre-collected data, they do not allow for
continuous or autonomous data. Reinforcement learning (RL)
methods closely mimic humans learning from interaction with
their environments, and have found great success navigating
through complex environments. However, they require exten-
sive offline training and expensive onboard computation to run
in real-time [26]–[29]. As such, there is a need for an online
and continuously learning sample-efficient navigation system.

III. BACKGROUND

A. Spiking Wavefront Planner

Here we briefly describe the SWP model. For more details,
see [8], [9].

The spiking wavefront propagation algorithm assumes a
grid representation of space, where connections between units
represent the ability to travel from one grid location to a
neighboring location. Each unit in the grid is represented
by simplified integrate and fire neurons. Rather than weights
between neurons, the connections between neurons represent a
propagation delay, such that a spike signal takes D time steps
before being received by a downstream neuron. The activity
of neuron i at time t+ 1 is represented by (1):

vi(t+ 1) = ui(t) + Ii(t+ 1), (1)

in which ui(t) is the recovery variable, Ii(t) is the input
current, and t refers to time when simulating neuron dynamics.

The recovery variable ui(t) is described by (2):

ui(t) =

{
β if vi(t) = 1

min(ui(t− 1) + 1, 0) otherwise
, (2)

such that immediately after a membrane potential spike, the
recovery variable starts as a negative value β and linearly
increases toward a baseline value of 0. For our experiments,
β is set to -10. We found this to be sufficiently large enough
to prevent a spike from reactivating previously visited nodes.

The input current I at time t+ 1 is given by (3):

Ii(t+ 1) =

N∑
j=1

{
1 if dij(t) = 1

0 otherwise
, (3)

such that dij(t) postpones the integration of input, I , from
neighboring neuron j to neuron i. This delay is given by (4):

dij(t+ 1) =

{
Dij if vj(t) ≥ 1

max(dij(t)− 1, 0) otherwise
. (4)

The value of Dij(t) is the propagation delay between
neurons i and j, and denotes the expected cost of traveling
from location i to j. This is initialized to 1 for all values.
Cost is an open parameter, which could depend on a number
of variables. In the present paper, multiple measures of cost are
measured simultaneously, which is explained in more detail in
section V-A.

B. E-Prop

The E-Prop learning rule was developed to learn sequences
in recurrent spiking neural networks by using an eligibility
trace to implement backpropagation through time to minimize
a loss function [30]. The present work used E-Prop to learn a
map of the environment, which is represented by a recurrent
spiking neural network, based on the sensed cost of traversal.
For path planning purposes, the active neurons after a wave
propagation are eligible for updates. An eligibility trace based
on time elapsed since the wave reaches the goal destination
dictates the eligibility. E-Prop is applied to the delay Dij

between neuron i and j along the traversed path.

Dij(T + 1) = Dij(T) + δ(ei(t)(mxy −Dij(T)), (5)

where δ is the learning rate, set to 0.5, ei(t) is the eligibility
trace for neuron i, and mxy represents the cost observed from
the robot’s sensors at location (x, y), which corresponds to
neuron i. In this case, T represents time incremented each
time a path is completed. This rule is applied for each of the
neighboring neurons, j, of neuron i. The loss in Eqn. 5 is mxy

- Dij .
The eligibility trace for neuron i is given by (6):

ei(t+ 1) =

{
1 if vj(t) ≥ 1

ei(t)− ei(t)
τ otherwise

, (6)

where τ is the rate of decay for the eligibility trace, set to 25.
An example of the eligibility trace from a planned path can
be seen in the right panel of Fig. 1.

To determine a path from the robot’s current location to
a destination, a signal is sent originating from the neuron
corresponding to the robot’s current location. This signal
propagates based on the delays D to the origin neuron’s
neighbors. This is repeated for each of these neurons and their

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

Fig. 2: The Clearpath Jackal robot.

neighbors until a signal reaches the neuron corresponding to
the destination. The origin of this signal is recursively traced
backwards until the neuron representing the current location is
reached. This sequence of neurons represents the path of least
cost given the robot’s information about the environment.

IV. EXPERIMENTAL SETUP

A. Robot Platform and Environment

The robot platform used in the experiments was the Jackal
Unmanned Ground Vehicle from Clearpath Robotics (Fig. 2).
The Jackal is capable of navigating through difficult, uneven
terrain. To localize the robot in its environment and determine
the distance to waypoints we used a NovaTel GPS unit. To
determine the robot’s heading and bearing, we used the Lord
Microstrain 3DMGX5 inertial measurement unit.

We tested our navigation system in Aldrich park: A hilly
park located at the center of of the University of California,
Irvine. A top down view of the environment can be seen in
Fig. 3. A 17x17 grid, 5.1 meters apart were used as waypoints
(see Fig. 4). This distance was chosen based on the precision
of the GPS unit of 1.2 meters. Terrain in the environment was
hilly and varied between thick grass, paved road, and dirt road.
The environment contained a number of trees which served as
obstacles for the robot in addition to foot traffic along the
road. The robot explored this environment for 350 trials over
4 days and approximately 12 hours of total runtime. Some
sections of the grid were removed from consideration, as they
were completely intraversable due to large root structures that
could not be detected by the LiDAR. The system was initially
tested in a field near the UCI campus with similar results, but
we found Aldrich Park to have more challenging features.

B. Evaluation and Comparisons

Using the learned costmap, we compared the SWP to the
RRT* [14], A* [10], and D* Lite [11] path planning algo-
rithms. For RRT*, the extension of the tree was constrained
to be only in the direction of waypoints. This was necessary,
as the costmap only contains delays for movement in the
cardinal and ordinal directions. For A* and D* Lite, we used
the common heuristic of shortest Euclidean distance.

Fig. 3: Top down view of the Aldrich Park environment.
Imagery ©Google

We tested paths generated by these algorithms as well as
the SWP on 25 randomly selected paths whose start and
end waypoints were at least 3 waypoints apart to ensure
meaningful choices in path planning. During traversal, we
collected measures corresponding to the learned costs.

To evaluate the effectiveness of the SWP in navigating our
cost maps, we also exhaustively simulated all potential start
and end locations with a minimum separation of 3 waypoints.
This was similarly done for A*, RRT*, D* Lite, and a naive
planner which generated a path with the shortest Euclidean
distance.

V. METHODS
A. Cost Measures

We considered three measures of cost:
1) Current Cost: The amount of current from the battery

to the left and right wheels. This was determined inter-
nally using the status messages automatically published
by the Jackal. For each incoming current reading, we
considered the minimum value between the left and right
side. This was to prevent spikes in current caused by
turning from influencing the cost, which may happen
due to trajectory recalculation and not from features in
the environment.

2) Obstacle Cost: The presence of obstacles during traver-
sal. To recognize obstacles we used the SICK LMS111
2D LiDAR, which has an aperture angle of 270 degrees
and an angular resolution of 0.5 degrees. Objects were
considered obstacles if the LiDAR detected a number of
consecutive data points below a threshold of 2 meters.
The cost before normalization was calculated as the
fraction of time spent with obstacles in the field of view
en route to the waypoint. The Jackal avoided an obstacle
by turning away from it until the obstacle was out of
view. In the case that a collision was still eminent (such
as if part of the obstacle was too high or low for the
LiDAR), manual controls were used to direct the Jackal
past the obstacle. This was a rare occurrence, and was
only necessary due to benches in the environment lying
above the field of view.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

ESPINO et al.: RAPID ADAPTING PATH PLANNING 5

3) Slope Cost: The slope of the ground was based on
the pitch and roll readings from the IMU. Because flat
ground is measured as 0 radians of rotation about both
axes, this cost (before normalization) was calculated as
the sum of the rotation about the pitch and roll axes.

Additionally, a cost representing completely intraversable
locations was included, which incurred cost only when the
robot was unable to reach a waypoint in the allotted time. In
this case, a maximum cost of 10 was assigned to the delays
into this waypoint to discourage its use in future paths.

In order to convert costs to values suitable for training
the SWP, sensor data needed to be converted into integers
representing learnable delay values. We chose 10 as the max-
imum delay value to maintain a fast network response during
wave propagation. To obtain normalization constants for each
measure, the Jackal was driven between waypoints prior to
training. Minimum and maximum values were calculated as
two standard deviations below and above the mean. Outliers
during training were clamped prior to normalization.

Each of these costs are maintained individually for a given
neuron’s delay values. To combine costs into a single map,
the delay values for each chosen cost are added together. This
value is then normalized between 1 and 10 again across all
neurons to maintain a fast network response.

B. Environment Mapping
A single trial with the robot proceeded as follows. First,

an end point was randomly determined using a Levy Flight
distribution. This distribution is commonly used to model
foraging patterns in animals [31]. The Levy Flight distribution
will tend to focus search in a local area while occasionally
jumping to a distant area. This was a better exploration strategy
than a more random search pattern, such as Brownian motion.

Next, the SWP planned a path from the robot’s current
location to the end point by setting the activity vi of the
starting neuron to 1 and simulating the neuron behavior as
in Eqns. (1) through (4). The delay values dij for each neuron
used a costmap combining all measures of cost. The eligibility
trace generated by the SWP was used to update the delays
with E-prop as in Eqn. (5). The robot then navigated between
waypoints determined by the generated path.

To reach a waypoint, the robot oriented to the direction of
the waypoint by rotating until the robot’s heading (orientation
with respect to a global reference frame) matched the desired
bearing (orientation with respect to the waypoint). When the
heading was suitably close, the robot would proceed towards
the waypoint. If at any point during traversal the difference
between the bearing and the heading exceeded π

12 , the robot
would stop to rotate to the correct orientation before proceed-
ing. We found this value to be a suitable level of precision for
our IMU.

The trial was complete once all waypoints were reached, or
the robot was unable to reach a waypoint after 45 seconds. In
the latter case, the robot would return to the previous waypoint.
After each trial, the delays of the costmap were saved. The
saved delays were used in simulated experiments to analyze
possible paths taken by the robot under different path planning
algorithms.

Fig. 4: The costmap for all costs added and normalized after
learning. Nodes are colored according to the mean of the
delays D from other nodes. Example paths minimizing current
drawn, obstacles encountered, and steepness are colored green,
red, and blue, respectively.

VI. RESULTS

A. Environment Mapping

The costs determined from the robot’s exploration of
Aldrich park are shown in Fig. 4. Nodes are colored according
to the mean of delays D from other nodes using all costs com-
bined. Candidate paths minimizing current drawn, obstacles
encountered, and steepness, as well as the path taken when
these costs are combined, are shown in the figure.

Using the current cost criteria, we found similar values
between the grass, dirt road, and pavement, indicating they
were similarly traversable in terms of energy consumption.
Areas with slightly elevated current cost included waypoints
around trees and at intersections between terrain. We speculate
this is because the transition from grass to pavement or to dirt
road caused increased unevenness, and consequently, stress
on the motors. The current minimizing path took a relatively
straight path visiting a minimal amount of waypoints (green
line in Fig. 4).

The obstacle cost criteria produced sparser costs, with
higher costs at tree and bench locations. Foot traffic along the
sidewalk also resulted in higher obstacle costs. Occasionally,
due to the unevenness from the road or from sloped areas, the
robot was also at an angle steep enough to briefly detect the
ground as an obstacle. In the obstacle minimizing path (red
line in Fig. 4), the robot avoided a row of trees by taking a
slightly longer route.

Because of a steep hill, there was a higher slope cost in the
bottom right quadrant of the cost map. When planning a path
through this hill, the robot traversed up the hill, moved along a
flat ridge for most of its route, and then down the hill to reach
the goal (blue line in Fig. 4). Incorporating all three measures

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

Fig. 5: Mean squared error between the delays D of the model
at each training step, during a single 12-hour online learning
run, and the final learned costs of the model.

Fig. 6: Top image shows example paths demonstrating adap-
tation after multiple experiences in a changing environment.
Red, green, and blue lines outline the planned path after zero,
one, and two updates to the model, respectively. The location
of placed obstacles are marked with a yellow star. Bottom
images show changes to the model delays after the first (left)
and second update (right). Colored edges indicate the extent
of the delay change between the two neurons.

of cost into path planning resulted in a path that attempted
to avoid the sloped area before traversing along grass that is
lower cost than the dirt road where there tends to be obstacles
(cyan line in Fig. 4).

TABLE I: Comparison between RRT*, A*, and SWP on paths
taken by robot.

Planner RRT* A* SWP (ours)
Path Length 60.23* 46.98 46.6
Current drawn 468.74 382.82 415.89
Obstacles encountered 4.45* 3.95 2.06
Slope 7.52 7.72 7.57
Normalized Cost 24.63 21.83 21.67

* denotes p<0.05; t-test with Bonferonni correction

B. Continual Learning and Adaptation

Continual learning is realized through E-prop’s ability to
generate an increasingly accurate map of the environmental
costs as the robot explores its environment. Fig. 5 compares
the delays of the SWP after each executed path with that of the
final learned model during a single 12-hour run with online
learning. Mean squared error of each comparison steadily
declined, which suggests that each training step is improving
upon the last.

Continual learning facilitated rapid adaptation in the face of
environmental changes. To demonstrate adaptation, we placed
an obstacle in the robot’s path. After one or two experiences
in this new situation, the robot updated its cost map with this
information. Fig. 6 shows the new paths taken by the robot
after the first and second model update.

The initial path (shown in red) travels along waypoints
on the road, however the presence of the obstacle incurs
high obstacle cost, as evidenced by high weight changes at
the obstacle location. After a single update, the second path
(shown in blue) avoids the obstacle but travels through a sloped
hill area to do so, incurring a higher slope cost. This can be
seen from the high weight changes when traversing up or down
the hill. With one final update, the final path (shown in green)
then travels away from the road along flat grass to reach the
goal, avoiding both the placed obstacle and the hill.

C. Comparisons with Existing Path Planning Algorithms

In tests with the physical robot in paths in the environment
(Table I), the SWP planned significantly shorter paths and
minimized obstacle costs better than RRT*. Both planners
performed similarly on other costs. A* was most comparable
to the SWP, as neither path length nor measures of cost were
significantly different between the two algorithms. The lack
of significance in many of these metrics could be due to not
enough sample routes, which we address by simulating more
paths (see Table II), and showing that our SWP has significant
advantages as routes get longer (Fig. 7).

To overcome the small sample size, we simulated all
possible paths of length greater than 3 (n = 57086) on the
learned costmap itself. The results of this are shown in Tab.
II. The SWP significantly outperformed RRT*, A*, and D*
Lite on minimizing cost. Additionally, paths generated by the
Spiking Wavefront Planner were significantly shorter than its
comparisons. D* Lite and A* performed similarly, likely due
to the similarity in planning using a heuristic and priority

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

ESPINO et al.: RAPID ADAPTING PATH PLANNING 7

TABLE II: Comparison between RRT*, A*, a Naive planner,
D* Lite, and SWP on simulated paths.

Planner RRT* A* Naive D* Lite SWP
Path Length 59.01* 51.73* 47.73* 53.60* 50.91
Current Cost 22.94* 20.17 22.13* 21.08* 20.08
Obstacle Cost 14.21* 13.21* 15.44* 13.00* 12.80
Slope Cost 25.63* 22.19 23.79* 22.78* 22.17
Normalized Cost 22.07* 19.55* 21.85* 20.01* 19.36

* denotes p<0.05; t-test with Bonferonni correction

TABLE III: Comparison between the SWP and D* Lite on
simulated paths with a changed environment.

Planner D* Lite SWP (Ours)
Path Length 43.15* 44.80
Current Cost 17.28* 17.01
Obstacle Cost 11.74* 12.06
Slope Cost 19.34* 18.98
Normalized Cost 16.94 16.78

* denotes p<0.05; t-test with Bonferonni correction

queue. The paths were longer than the naive planner, however
this was expected as the naive planner travels the shortest
euclidean distance regardless of cost.

Fig. 7 illustrates how the comparison between algorithms
changes over increasingly longer path lengths. The SWP
performed the best, and RRT* performed the worst in terms of
cost. As the paths got longer, the disparity between algorithm
performance became more pronounced.

To evaluate our model against dynamic planners such as D*
Lite, we simulate paths through our costmap where the robot
can observe costs one step ahead. We randomly selected start
and end points where both the SWP and D* Lite initially
planned the same path (n = 10000). Environmental change
is simulated midway by elevating a random cost measure
between two waypoints by 3.0. When observed by our model,
E-prop is run to determine a new path from the current location
to the goal. Results in Tab. III show that D* Lite paths
were shorter and minimized obstacle costs, whereas the SWP
minimized slope and current. The D* Lite comparison was
tested in simulation because cost measures, such as current
measured by power consumption and slope measured by IMU,
can only be determined by physically traversing between
waypoints. This means that sensing the costs of waypoints
ahead of time, a necessary component of replanning for D*
and RRTX methods, was not possible.

A time-complexity analysis of our model and its com-
parisons are shown in Fig. 8. The analysis was conducted
on a Dell XPS 15 9510 laptop, with an Intel Core i7-
11800H processor and 16GB of DDR4 RAM. A* and D* Lite
outperform both the SWP and RRT* across all lengths, and
grows at a much slower rate. The SWP performs better than
RRT*, which suffers from high variance due to its random
nature. As discussed earlier, the SWP has the potential for
highly parallel implementations on conventional hardware and
on neuromorphic computers, which would dramatically reduce
computation time and power consumption.

Fig. 7: Difference in performance for each method as the
length of simulated paths is increased. Y-axis is the mean cost
of the paths. X-axis is the minimum path length considered.
Shaded areas represent 99% confidence interval.

VII. CONCLUSIONS AND FUTURE WORK

The SWP with E-Prop learning can rapidly learn traver-
sal costs for navigation and can adapt to change without
lengthy offline retraining. It demonstrated shorter and more
cost effective paths than other path planning algorithms. The
cost maps learned through E-prop may be utilized with a
number of existing path planning algorithms, including A*,
D*, and RRT*. Although A* may perform similarly with a
tailored heuristic, this requires careful consideration of how
to estimate the future measure of cost at a given location.
Moreover, a different heuristic may be necessary for each cost
or combination of costs. As evidenced by the growing disparity
of performance in Fig. 7, an improper heuristic may result in
worse performance as longer paths are required. By contrast,
the SWP can be universally applied to a costmap regardless
of what combination of costs are considered.

Our navigation system is not without its limitations. Cur-
rently, costs are obtained through experience only and cannot
generalize between waypoints or environments, or observed
ahead of time. Depending on the learning rate, it may take
multiple passes between the same two waypoints to properly
learn an accurate cost. It has also been shown here and in
previous work that the SWP is computationally slower than
A* [8].

These limitations serve as avenues for future research. Our
current implementation does not use vision, however computer
vision techniques for self-labeling such as those found in
[26], [29] could be used to estimate the cost of current and
nearby trajectories during traversal. It has also been shown
that incorporating biologically-inspired memory replay can
improve exploration speed and adaptation to changes in the
environment [32].

While our model was tested on traditional hardware, the
spiking nature of our model enables the possibility of imple-
mentation on neuromorphic hardware. Architectures, such as
Intel’s Loihi [33] and the DYNAP-SE neuromorphic processor
[34], support synaptic delays and the updating of synaptic
weights given local learning rules, which are key elements
for our model. This demonstrates a clear path towards neuro-
morphic implementation in the future.

In summary, this work demonstrates our efficient navigation
system for off-road navigation that learns continuously from
interaction with its environment in real-time, without the need

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

Fig. 8: Time elapsed for path planning algorithms as a function
of simulated path length. Y-axis is the mean cost of the paths.
X-axis is the path length considered. Line and shaded area
represent the mean and standard deviation from 5 runs of 1000
randomly selected paths.

for multiple rounds of training and deployment or expensive
hardware. The system learns multiple measures of cost in
parallel, and can plan paths that minimize such costs or
any combination of them when traversing the environment.
Through our real world and simulation results, we determined
that these paths are shorter and more cost effective than A*
and RRT*. The simplicity of the software stack supports future
development, perhaps using context from a camera, memory
replay [32], more robust obstacle detection and avoidance, and
neuromodulation [35] to control combining costmaps.

REFERENCES

[1] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, “Review of
autonomous path planning algorithms for mobile robots,” Drones, vol. 7,
no. 3, 2023.

[2] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, vol. 46, p. 569–597, Mar. 2022.

[3] C. S. Tan, R. Mohd-Mokhtar, and M. R. Arshad, “A comprehensive
review of coverage path planning in robotics using classical and heuristic
algorithms,” IEEE Access, vol. 9, pp. 119310–119342, 2021.

[4] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. Fonseca Guerra,
P. Joshi, P. Plank, and S. Risbud, “Advancing neuromorphic computing
with loihi: A survey of results and outlook,” Proceedings of the IEEE,
vol. PP, pp. 1–24, 04 2021.

[5] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, pp. 652–665, 05 2014.

[6] K. D. Fischl, K. Fair, W.-Y. Tsai, J. Sampson, and A. Andreou,
“Path planning on the truenorth neurosynaptic system,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–4,
2017.

[7] A. Rostami, B. Vogginger, Y. Yan, and C. G. Mayr, “E-prop on spinnaker
2: Exploring online learning in spiking rnns on neuromorphic hardware,”
Frontiers in Neuroscience, vol. 16, 2022.

[8] T. Hwu, A. Y. Wang, N. Oros, and J. L. Krichmar, “Adaptive robot path
planning using a spiking neuron algorithm with axonal delays,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 10, no. 2,
pp. 126–137, 2018.

[9] J. L. Krichmar, N. A. Ketz, P. K. Pilly, and A. Soltoggio, “Flexible path
planning through vicarious trial and error,” bioRxiv, 2021.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[11] A. Stentz, “Optimal and efficient path planning for partially-known en-
vironments,” in Proceedings of the 1994 IEEE International Conference
on Robotics and Automation, pp. 3310–3317 vol.4, 1994.

[12] S. LAVALLE, “Rapidly-exploring random trees : a new tool for path
planning,” Research Report 9811, 1998.

[13] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[15] M. W. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-
query sampling-based motion planning with quick replanning,” The
International Journal of Robotics Research, vol. 35, pp. 797 – 822,
2016.

[16] R. C. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” The International Journal of Robotics Research,
vol. 5, no. 4, pp. 56–68, 1986.

[17] S. Thrun and M. Montemerlo, “The graph slam algorithm with appli-
cations to large-scale mapping of urban structures,” The International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[18] R. Mur-Artal, J. Montiel, and J. Tardos, “Orb-slam: a versatile and
accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, pp. 1147 – 1163, 10 2015.

[19] M. Milford, G. Wyeth, and D. Prasser, “Ratslam: a hippocampal model
for simultaneous localization and mapping,” in IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004, vol. 1, pp. 403–408 Vol.1, 2004.

[20] S. Triest, M. G. Castro, P. Maheshwari, M. Sivaprakasam, W. Wang,
and S. Scherer, “Learning risk-aware costmaps via inverse reinforcement
learning for off-road navigation,” 2023.

[21] A. Shaban, X. Meng, J. Lee, B. Boots, and D. Fox, “Semantic terrain
classification for off-road autonomous driving,” in Proceedings of the
5th Conference on Robot Learning (A. Faust, D. Hsu, and G. Neumann,
eds.), vol. 164 of Proceedings of Machine Learning Research, pp. 619–
629, PMLR, 08–11 Nov 2022.

[22] J. A. Placed, J. Strader, H. Carrillo, N. A. Atanasov, V. Indelman,
L. Carlone, and J. A. Castellanos, “A survey on active simultaneous
localization and mapping: State of the art and new frontiers,” IEEE
Transactions on Robotics, vol. 39, pp. 1686–1705, 2022.

[23] F. Codevilla, M. Müller, A. Dosovitskiy, A. M. López, and
V. Koltun, “End-to-end driving via conditional imitation learning,”
CoRR, vol. abs/1710.02410, 2017.

[24] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba, “End to end learning for self-driving cars,” CoRR,
vol. abs/1604.07316, 2016.

[25] S. Ross, N. Melik-Barkhudarov, K. Shankar, A. Wendel, D. Dey,
J. Bagnell, and M. Hebert, “Learning monocular reactive uav control
in cluttered natural environments,” Proceedings - IEEE International
Conference on Robotics and Automation, 11 2012.

[26] G. Kahn, P. Abbeel, and S. Levine, “BADGR: an autonomous
self-supervised learning-based navigation system,” CoRR,
vol. abs/2002.05700, 2020.

[27] T. Manderson, S. Wapnick, D. Meger, and G. Dudek, “Learning to drive
off road on smooth terrain in unstructured environments using an on-
board camera and sparse aerial images,” 2020.

[28] K. Zhang, F. Niroui, M. Ficocelli, and G. Nejat, “Robot navigation
of environments with unknown rough terrain using deep reinforcement
learning,” 2018 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pp. 1–7, 2018.

[29] D. Shah and S. Levine, “Viking: Vision-based kilometer-scale navigation
with geographic hints,” in Robotics: Science and Systems Foundation,
Jun 2022.

[30] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, “A solution to the learning dilemma for recurrent
networks of spiking neurons,” Nature Communications, July 2020.

[31] X.-S. Yang, “Random walks and optimization,” in Nature-Inspired
Optimization Algorithms, ch. 3, pp. 45–65, Academic Press, 2014.

[32] H. Espino, R. Bain, and J. L. Krichmar, “Selective memory replay im-
proves exploration in a spiking wavefront planner,” in 2023 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2023.

[33] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[34] F. Sandin and M. Nilsson, “Synaptic delays for insect-inspired temporal
feature detection in dynamic neuromorphic processors,” Frontiers in
Neuroscience, vol. 14, 2020.

[35] J. Xing, X. Zou, and J. L. Krichmar, “Neuromodulated patience for
robot and self-driving vehicle navigation,” in 2020 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2020.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3457371

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 12,2024 at 04:25:44 UTC from IEEE Xplore. Restrictions apply.

