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Abstract

EfficientPose is an impressive 3D object detection model.
It has been demonstrated to be quick, scalable, and accu-
rate, especially when considering that it uses only RGB
inputs. In this paper we try to improve on EfficientPose
by giving it the ability to infer an object’s size, and by
simplifying both the data collection and loss calculations.
We evaluated ePose using the Linemod dataset and a new
subset of it called ”Occlusion 1-class”. We also out-
line our current progress and thoughts about using ePose
with the NuScenes and the 2017 KITTI 3D Object Detec-
tion datasets. The source code is available at https:
//github.com/tbd-clip/EfficientPose.

1. Introduction
Object detection is one of the core problems in computer

vision. Given an input image and a predefined object class,
the task is to locate an instance of the desired object type
in the image. Typically this is accomplished by reporting a
bounding box. There are several variants of the problem. In
multi-object detection, all instances of the object type are
located. In semantic segmentation, each pixel of the image
that belongs to an object of the class is labeled. Instance
segmentation further distinguishes between each separate
occurrence. Multi-class object detection, as the name sug-
gests, requires locating instances of each of a set of prede-
fined object classes instead of just one.

A natural extension of the object detection problem is
to define three-dimensional bounding cubes in world coor-
dinates instead of just drawing two-dimensional bounding
boxes on the image plane. This problem, called 3D ob-
ject detection, is especially important in autonomous driv-
ing and other robotics applications as agents need to pre-
dict the future positions of obstacles in 3D space. It has
received a lot of attention in recent research. LiDAR-based
point cloud-based methods [7, 1] have driven considerable
progress. However, LiDAR sensors are not always available
due to their high cost, so there is also some research into 3D
object detection from RGB images [15, 2, 14].

In section 2 we discuss related work in 3D object detec-
tion. Section 3 covers the primary evaluation metric and
our high-level technical approach. We describe our experi-
ments in section 4, and finally we summarize our thoughts
and opportunities for future work in section 5.

2. Related Work
We now review existing work on 3D Object Detection

that uses RGB images as an input. We divide existing de-
tectors into two categories. We first cover traditional de-
tectors, which require no prior information about the target
object’s shape, and then discuss detectors that leverage de-
tailed 3D-models of the target object (note: we use the term
“3d-models” to distinguish mesh-style object models from
deep learning models).

2.1. Traditional Detectors

Traditional detectors don’t require 3D-models of the tar-
get objects to estimate 3D bounding cubes. Some models,
like MonoPSR [8], use a mature 2D object detector to pro-
duce accurate 2D bounding boxes first, and then regress a
3D bounding cube from an initial 3D proposal from there.
Similarly, [11] predicts a 3D bounding cube from a 2D
bounding box, but in this case they first predict the object’s
orientation using a novel hybrid discrete-continuous loss.

PerspectiveNet [6] instead defines “perspective points”
as the 2D projections of 3D keypoints. Using the geometric
constraints imposed by the perspective projection, it recon-
structs the 3D position of the target object using detected
keypoints without prior knowledge about the object’s 3D
shape.

2.2. Detectors Based on 3D-models

These detectors require 3D-models of the target object
to estimate the 3D bounding cubes. There are two main
approaches: (i) viewpoint-based methods and (ii) keypoint-
based methods.

Viewpoint-based methods predict 3D bounding cubes
with textured models. [10] proposed predicting several 3D
bounding cubes for each object instance to estimate the
bounding cubes distribution generated by symmetries and
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repetitive textures. Each predicted hypothesis corresponded
to a single 3D translation and rotation, and estimated hy-
potheses collapsed onto the same valid bounding cube when
the object appearance was unique.

Keypoint-based methods predict 3D bounding cubes by
detecting specified keypoints and then solving Perspective-
n-Point (PnP) problem to estimate the 3D bounding cubes.
[2] proposed a 6D object pose estimation method that pre-
dicts 2D bounding boxes using a 2D object detector, uses
network heads to estimate the missing depth information to
lift 2D bounding boxes to 3D space, then uses PnP to refine
the final pose.

The advantage of using detectors based on 3D-models
is they are robust and more accurate compared to tradi-
tional detectors that don’t use 3D-models to estimate the 3D
bounding cubes. However, detectors based on 3D-models
will require 3D-models to be used during training and eval-
uation of the detectors to calculate the loss rather than us-
ing the 3D bounding cube. Since ground-truth 3D-models
are not always available (e.g., pedestrian detection), this is
a rather limiting requirement. The other drawback to 3D-
model-based detection is that it requires the detector to pre-
dict a full 3D-model, which is computationally expensive
compared to simple bounding cube estimation.

3. Technical Approach
3.1. Evaluation Metric

We evaluate our models with the ADD(-S) metric [5].
Symmetric and asymmetric objects are evaluated differently
(ADD and ADD-S respectively). This is to ensure that the
symmetric object labels are not unduly punished by a higher
loss for predictions that might be semantically the same but
just rotated relative to the ground truth label. This is the
effect of the minimization in the for loop, which allows the
comparison of object points to any other object points in
M (originally a set of surface points from a given object
of interest). We adopt the same (rather arbitrary) threshold
of 10% of the object diameter to count an object as being
correctly detected or not. Said another way, if the average
point pair distance between the model prediction and the
ground truth is larger than 1/10th of the object’s diameter,
then the object was detected incorrectly.

ADD = 1
m

∑
x∈M ‖(Rx+ t)− (R̃x+ t̃)‖2

ADD-S = 1
m

∑
x1∈M minx2∈M ‖(Rx+ t)− (R̃x+ t̃)‖2

3.2. Training with Bounding Cubes

While EfficientPose [2] uses a 3D-model with many sur-
face pointsM to model the target object, we wanted to re-
duce the requirement for prior information. One of our main
contributions is to train the model instead on a 3D bound-
ing cube. In this way, the loss function is computed against

only eight points (instead of an average of 500 points) per
object, which reduces the number of input data points by
many times.

3.3. Improving the loss

The other limiting assumption made by [2] is that the
precise size of the target object is known ahead of time. We
aim to remove this requirement and instead let the network
learn the object’s size. We do this by adding an additional
module, identical to EfficientPose’s rotation subnet, to learn
a 3-dimensional scale value for the object’s bounding cube.
We additionally add a scaling term to the loss function in
order to train the scaling subnet.

4. Experiments
Our experiments do not focus much on the speed of train-

ing. EfficientPose [2], which our work is built upon, also
defined epochs in an odd way, which makes it difficult to
compare results. Their definition is a hard-coded number
of training steps per epoch, thus changing the mini-batch
size or including less or more data-augmentation does not
change the number of training steps in an epoch. Given
more time, or if we were developing a product to be used in
production, we would want to make this more in line with
the standard definitions. For these reasons we will loosely
talk about the time it took to train these models. The models
in this report were trained on an RTX 2080 and RTX 8000
GPU with 8GB and 48GB of VRAM respectively. The lat-
ter proved useful as even small batch sizes of the smaller
models (φ = 0) required a tremendous amount of VRAM to
train (e.g. a batch size of 12 took 11GB). We used exclu-
sively the smaller φ = 0 models, which took roughly 3 days
each to train to completion. This included transfer learning
EfficientDet [13] weights pretrained on COCO [9]. The ro-
tation and translation subnetworks were always initialized
from untrained weights though, as was the scaling subnet-
work that will be introduced in section 4.2.

The authors of [2] implemented group normalization
[16] in order to train large φ = 3 models, which require
large amounts of VRAM to perform backprop. The experi-
ments after and including scaling Linemod cat detector are
done using batch normalization instead. Various batch sizes
were used throughout training, between 1 and 50. Our intu-
ition after tuning these models is that group norm did help at
lower batch sizes, but that a batch size of 16 with the small
φ = 0 models works well too. This large of a batch size was
enabled by the larger memory GPU (the RTX 8000).

Table 1 summarizes the best scores achieved in each of
our experiments.

4.1. Simplifying the Loss

EfficientPose [2] requires a detailed set of surface points
M to model each potential object of interest in the image.
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Figure 1: Results of detecting the camera (bottom left) after
training a model with the bounding cube for the clothes iron
(top left).

Figure 2: ADD(-S) score as a function of training epochs
while training a camera detection model on a clothes iron
mesh. The highest score achieved was 0.828, after 320
epochs.

This is a rather restricting assumption that limits the ap-
plicability to mostly toy problems. We were interested in
calculating the loss without the need for this set of surface
points. The intuition that motivated this experiment was
that the ADD(-S) loss function would seem to be fairly ag-
nostic to the choice of M (see figure 1 for an example).
A quick test of this hypothesis was conducted by swapping
the Linemod .ply model files used to train the various sin-
gle object detectors. The camera and clothes ironM were
swapped and good results were still obtained. The ADD(-
S) score was 0.83. This could have undoubtedly been im-
proved upon, as training takes quite a while and we were
convinced by the results seen in figure 2 that this method
was working to train a detector. Thus, training was stopped
before convergence so we could move on to the next exper-
iment into simplifying the loss.

We build on the previous experiment to further demon-
strate that the ADD(-S) loss of [2] creates a good learn-
ing signal essentially regardless ofM. Since many 3D ob-

ject data sets already have bounding cubes as part of the
ground truth labels, we sought to use these in the loss func-
tion as a replacement forM. This set of 3D points would
be of length 8, reducing the number used by roughly 60x
compared to [2]. This also produced good results, even
though the model was trained with the 3D bounding cube
vertices of the wrong .ply model again. To reiterate: the
camera detection model seen in figure 1 was trained with
the bounding cube vertices obtained from the clothes iron
.ply model file. This model was trained until convergence
and achieved 0.91 ADD(-S) (it actually did as well as 0.95
but the checkpoint directory has been lost to time).

Experiment ADD(-S)
Camera detector w/ iron model 0.83

Camera detector w/ iron bounding cube 0.91
Kitty detector w/scaling 0.83

Occlusion 1-class w/bounding cube prior 0.06
Occlusion 1-class w/o symmetric objects 0.13

Table 1: Best ADD(-S) achieved for each experiment.

4.2. Scaling Subnetwork

Another disappointing assumption made by [2] is that
oracle sizing information is known about each object of in-
terest. This too, like the need for an accurate and detailed
set of surface points, limits the applicability of this other-
wise powerful method. If the scaling can instead be made
part of inference, this method has a chance of working on
interesting problem formulations.

The scaling subnetwork we introduce is an exact copy
of the rotation subnetwork from the original EfficientPose
architecture. The architecture is shown in figure 3. The
Refinement Module is just a sequence of Diter 3x3 convo-
lutional layers. Niter, Diter, and Drot are defined as:

Niter(φ) = 1 + bφ/3c (1)

Diter(φ) = Drot(φ) = 2 + bφ/3c (2)

For this initial proof of concept the scaling subnet only
had to learn to scale all the points inM by 1. In later ex-
periments we use a bounding cube prior that requires more
intricate scaling to be learned. The results can be seen in
figure 4. The kitty detector was also trained using the cor-
rect bounding cube vertices (not a swapped model’s vertices
as done in the previous subsection), and got an ADD(-S) of
0.83. It intuitively makes sense that the old performance
of 0.98 ADD(-S) reported by the authors of EfficientPose
should act as an upper bound on our model’s performance
given that they use ground truth scaling information, where
instead our method must guess at that information.

3



Figure 3: Our scaling subnetwork architecture. The diagram is an updated version from [2].

Figure 4: Sample detection results for the kitty detector with
the initial proof-of-concept scaling subnet.

Given that when [2] added the translation and rotation
subnetworks to EfficientDet it only reduced inference from
35 to 27 frames per second, our addition of an exact copy
of only the rotation subnetwork should have a small impact
on performance.

4.3. Occlusion 1-Class

The occlusion dataset is a subset of the Linemod dataset.
It includes a single scene with 8 annotated objects. Some of
these are heavily occluded, as indicated by the name of the
dataset. We made the task even more difficult by mapping
all of the objects to a single class, where originally each ob-
ject had its own class. This new dataset allows us to bench-
mark our EfficientPose additions against use cases where
there are multiple objects of interest in a given image, and
the use cases where there is intra-class size variance (i.e.
when objects in the same class have different scalings).

Unlike the scaling in the previous section, here we use a
bounding cube prior that is an average bounding cube over
all 8 objects in the class. The prior is then directly scaled
using the output of the scaling subnetwork.

Using a class average object diameter of 170 mm led
to an ADD(-S) score of only 0.06 for this difficult dataset.

Figure 5: Example inference from our new scaling subnet
addition. Note that the two worse object predictions are
both symmetric objects. This highlights how adding scaling
makes the ADD-S metric inappropriate for training.

Upon inspecting the results, one quickly realizes that the
symmetric objects are failing to be learned. The model al-
ways predicts scalings that result in small volumes. This
effect can be seen in figure 5. The ADD-S metric and loss
for symmetric objects was discovered to have become in-
appropriate for a network that includes a scaling inference,
because the inner-minimization allows the most favorable
points to be compared in order to avoid over-penalizing
model predictions. The model then learns to make a very
small volume guess that is close to just 1 or 2 points.

We took the two symmetric objects out of the dataset and
re-ran with the same hyper-parameters (6). The ADD(-S)
results more than doubled to 0.13 ADD(-S). This indicates
that not only will we need to change the loss for symmetric
objects, but currently including symmetric objects will hin-
der the performance w.r.t. the other asymmetric objects in
the dataset.
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Figure 6: Results from the same experimental setup as 5,
but with the symmetric objects removed from training. The
ADD(-S) score then jumps from 0.06 to 0.13. This demon-
strates that training our method on symmetric objects will
not only fail, but also degrades the performance on other,
non-symmetric objects.

5. Discussion

5.1. Challenges

5.1.1 Symmetry Problem

We tried to solve the symmetry problem where our detector
fails to estimate 3D bounding cubes for symmetrical ob-
jects. To solve this problem, we introduced an additional
loss to the translation loss to estimate the volume of the ob-
ject. We have tried two approaches to define the additional
loss: a simple volume estimation and a rotation-robust IoU
(RIoU) [17]. The simple volume estimation compares the
volume of predicted 3D bounding cube and the target 3D
bounding cube. Rotation-robust IoU [17] computes the In-
tersection over Union (IoU) for the 3D bounding cube by
taking rotation into consideration, as defined in equation 3.

IR IoU = min(I1, I2) · |cos (2 · (rg − rp))|
UR Io t = max (IRIoU , lg − wg + lp − wp − IRIoU )

RIoU =
IRIOU

URToU

(3)

In these equations (as described in [17]), lg ,wg , and rg
represent length, width, and rotation around z-axis respec-
tively of the ground truth 3D bounding cube. lp,wp, and rp
represent length, width, and rotation around z-axis respec-
tively of the predicted 3D bounding cube. I1 represents
the intersection of the predicted and ground truth bounding
cubes in the coordinate space of the ground truth, and I2

represents the intersection of the predicted and ground truth
bounding cubes in the coordinate space of the prediction.

Neither definition of the loss yielded good results when
training on symmetric objects without using 3D-models of
the objects compared to training on symmetric objects with
3D-models of objects on Linemod dataset. This means that
detection of symmetric objects remains an unsolved prob-
lem in our approach, but we hope that with further research
an appropriate loss function can be found to resolve the is-
sue. We suggest an alternative approach in section 5.2.

5.1.2 NuScenes

NuScenes [3] offers an autonomous driving dataset that
looks promising for our use case. It consists of 1000 20-
second video scenes captured in Boston and Singapore. In
each keyframe, 23 object classes are annotated with ground-
truth 3D bounding cubes. In each keyframe, several sensor
images are captured along with the ground truth annota-
tions. There are six cameras, one LiDAR, five RADAR,
one GPS, and an IMU. We ignore the other sensors and use
only the RGB camera images for training and evaluation.

The ground-truth bounding cubes are given as an 8x3
matrix of coordinates, with the four front points listed first
in clockwise order, followed by the back four. This fits well
with the loss model described in section 4.1. Unfortunately,
after building a data loader for this dataset and incorporating
it into the EfficientPose codebase, the model was entirely
unsuccessful and failed to produce almost any detections.
Debugging this behavior led to the discovery that the dataset
includes many fully occluded ground-truth bounding cubes,
as seen in figure 7.

Two reasons are given for this in the NuScenes issue
tracker. First, the LiDAR hat is mounted much higher on
the vehicle than the cameras, so although objects are hid-
den from camera view they may be visible by LiDAR in the
same keyframe. Second, NuScenes propagates temporarily
occluded bounding cubes through intermediate frames (al-
though it’s unclear under what conditions they do this, and
how they define temporarily in this case). This obviously
harms training when looking only at camera data, because
the model is trying to learn to detect what isn’t visible.

5.2. Future Work

Future researchers might be interested in a solution to
the volume collapse that we came up with. Each scaling
subnet output element could be put through an exponen-
tial and then offset by some small amount (e.g. 0.2). [12]
scales its anchor bounding boxes in a similar way, but with-
out the offset. The offset would essentially enforce a min-
imum volume of the predicted bounding cube, preventing
the undesirable effects of the current ADD-S loss that un-
knowingly encourages the scaling net to predict very small
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Figure 7: NuScenes images with heavily occluded ground-
truth bounding cubes.

volume bounding cubes.
We are still interested in applying ePose to a large dataset

like NuScenes, even if NuScenes in particular is not appli-
cable to a model like ours that does not leverage LiDAR
information. We are currently in the process of evaluating
ePose on the 2017 KITTI dataset for 3D Object Detection
[4]. This dataset has multiple levels of difficulty, classified
by the area of each annotation’s bounding box, and only
includes 1 degree of rotation about the y-axis. The 2017
KITTI dataset annotates the pose and rotation of bounding
cubes centered around pedestrians, cyclists, and cars. The
volume overlap threshold used for the KITTI leaderboards
is 70% for cars, and only 50% for the other 2 classes. It
would be interesting to see how our model ranks on the
leaderboard, against solutions that use LiDAR or depth in-
formation.

5.3. Conclusion

EfficientPose [2] is a promising method for 3D object
pose estimation, but it has real limitations when it comes to
applying it to some real-world situations. We endeavored
to improve the flexibility of the approach by reducing the
amount of detailed object information necessary to train the
network. We found that it is in fact possible to train the net-
work using 3D bounding cubes instead of high-fidelity 3D-
models. We also found that a scaling subnetwork success-

fully learns object sizes to a reasonable degree. We found
that symmetric objects pose a real challenge, and that addi-
tional research is needed to get the scaling module working
well in those cases. We also proposed possible future exten-
sions to our work. We consider our work to be a substantial
contribution to the field, and hope that continued work in
this direction can lead to highly successful real-time 3D ob-
ject detection from RGB images.
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